In the era of Industry 4.0, manufacturing analytics has taught companies how to leverage all the process data they’ve been collecting to optimize their operations, reduce costs, and drive innovation, in other words, reap the benefits of digitizing their production processes. By leveraging data from various sources - from shop floor sensors to enterprise IT systems - manufacturers can gain insights into their processes, supply chains, and overall performance.
Until recently, building predictive models from the process data has been challenging. However, novel approaches that mimic how GenAI process unstructured data seemingly with little data preparation, have lowered the barriers to quality monitoring and predictive optimization of manufacturing processes. This blog introduces Featrix as a platform delivering on that promise.
Going beyond manufacturing analytics, AI can power automation for a variety of workflows and business processes, which some call “Intelligent Automation”. In some ways, manufacturing analytics is a use case for intelligent automation. Stay tuned for another article for more details.
Manufacturing analytics, a key component of smart manufacturing, involves the collection and analysis of data primarily from industrial equipment, which can be a lot more challenging that collecting metrics and logs from IT systems and enterprise applications. This data-driven approach enables manufacturers to make more informed decisions, identify root causes of production errors, and predict bottlenecks across manufacturing and supply chain processes.
The primary goals of manufacturing analytics are:
One of the most powerful applications of manufacturing analytics is in anomaly detection and root cause analysis. By analyzing patterns in data from sensors and other sources, manufacturers can:
Anomaly detection seems straight forward, but different approaches apply depending on how much labeled data you have available. And obtaining a large number of examples of defective products or processes that have deteriorated is often difficult - after all, unless you are configuring a new manufacturing process, your existing process is working well most of the time, or else you’d like to be out of business already!
So if you have little to no known samples of abnormal products or processes, clustering can deliver you groupings that may be aligned with the process status or product quality. Or you apply so-called “normal only” models, which assume all training data represents the normal state, and you identify departures from normal as outliers. If you have a good amount of labeled (abnormal) samples, your options open up to the full range of supervised models.
If you have a sufficient amount of “abnormal” vs “normal” samples, tools like Featrix come into play. Featrix simplifies the process of building predictive models on structured data, making it easier for manufacturers to implement advanced analytics without requiring extensive data science expertise.
Manufacturing analytics doesn't stop at the factory floor. By applying similar principles to supply chain data, manufacturers can:
This end-to-end visibility allows manufacturers to create more resilient and responsive supply chains, a critical advantage in today's volatile global markets.
While the long-term benefits of manufacturing analytics are substantial, there are several areas where manufacturers can see immediate returns:
With just-in-time manufacturing having become widespread in today’s lean supply chains, applying manufacturing analytics is not just a differentiator, it’s become key to maintaining the viability of your business!
As we look to the future, the role of manufacturing analytics will only grow in importance. The introduction of low-code and no-code machine learning tools, like Featrix, will democratize access to advanced analytics, allowing more manufacturers to harness the power of their data.
Manufacturing analytics is part of a bigger new trend many call “Intelligent Automation”: companies can not only optimize their current operations but also pave the way for new business models and innovations. In an increasingly competitive global market, the insights provided by manufacturing analytics may well be the key to staying ahead of the curve. We’ll write about that soon.
Related content you may find useful:
We always welcome comments to hello@featrix.ai!